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W e  have  performed  numerical  simulations of the  behavior in a one- 
dimensional  thermal  conductivity cell  of helium  as it is  ramped  through  the 
superfluid  transition  from below. The  goal  of the  simulations is t o  be able 
to at  least  qualitatively, if not  quantitatively,  predict  the  behavior of he l ium 
in a  reduced  gravitational  environment.  These  numerical  simulations  can 
model  helium cells with  effective  gravitational  fields of lalgl > 0 b y  changing 
the  distribution of local transition  temperatures  to  match  the  desired  gravita- 
tional  environment.  The  numerical  results for the  simulated  behavior  show 
excellent  qualitative  agreement  with  the  observed  experimental  data  under a 
variety of effective  gravity  values. 

PACS numbers:  67.40 Pm, 67.40.Kh,  02.60 Lj, 02.70 Bf. 

1. INTRODUCTION 

When a side temperature  probe  with N IO-’K resolution was first at- 
tached to a thermal conductivity cell in the  late 198O’s,l several previously 
unexpected  phenomena were observed because of the high temperature res- 
olution  thermometry  and  the unique view point.  Those data were taken by 
applying a constant  heat  current to the  bottom of the  thermal conductiv- 
ity cell, ramping  the  temperature of the  top of the cell at a constant  rate 
starting from below the  transition  temperature for the  bottom of the cell 
(Tx(z = 0)), and  ramping  until  the whole  cell  was significantly above the 
transition.  When  the  temperature at the middle of the cell  was monitored, 
it was discovered that  the helium ramp  rate  dropped below the  ramp  rate of 
the  top of the cell once normal fluid appeared  in the cell (T > Tx(r = 0)). I t  
also was observed that  the  temperature rise at the middle of the cell, once 
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T H ~  > Tx(z  = 0.5L), was noticeably slower than  the  temperature rise  seen 
at the  bottom of the cell when normal fluid first  entered the cell. Because 
of these  experimental  observations,  there developed an interest to numeri- 
cally model the behavior of a thermal  conductivity cell of liquid helium-4 
ramped  through  the superfluid  transition.  Therefore, a simple one dimen- 
sional  model was developed,2 and  this model was used with some success to 
provide a bit of insight into these  experimentally observed phenomena. 

More recently there  has developed a strong  interest  in  the effects of 
gravity  on the X-transition. In  traditional  ground  based  experiments  there 
are  gravitationally  induced  pressure  variations  in  any macroscopic helium 
sample that limit how  closely the  transition  can  be approached. Currently 
there  are several experimental efforts underway to  study  the  thermal con- 
ductivity  near  the X-transition in a reduced  gravitational  environment, by 
either  performing the experiments  in low earth  orbit or by utilizing the low-g 
simulator at JPL.3 Because of these  experimental efforts, there is a renewed 
interest  in  being  able to model the behavior of a helium thermal  conductivity 
cell, but  with an emphasis  on modeling the behavior  in a reduced  gravitation 
environment. So, the original numerical model has  recently  been  expanded 
to include the ability to vary the acceleration due to gravity  acting  on the 
thermal  conductivity cell. 

Below we describe the numerical  technique used in  our model. The 
model  simluates  the experimental thermal conductivity cell by using the 
experimental1  measured values for the  Kapitza resistance, the applied heat 
current,  and  the  ramp  rate.  The  results of the model are  described,  and 
a comparison of the numerical  results  with  experimental data is  presented. 
Finally, we will discuss some of our  plans for extending  this  model. 

2. NUMERICAL TECHNIQUE 

The problem we are  interested  in  simulating is that of a thermal conduc- 
tivity cell of helium  initially below the X-transition temperature.  The  top 
temperature of the cell is ramped in time at a constant  rate while a constant 
heat  current, &bot, is  applied  from the  bottom of the cell. The  transition 
temperature will be height  dependent  due to the pressure  dependence of the 
transition, so the  bottom of the cell  will pass through  the  transition  first. 
While the cell remains below the  transition  temperature of the  bottom of 
the cell, all of the helium  in the cell  will be essentially isothermal  due to  the 
effectively infinite thermal conductivity of the superfluid  helium. Also, the 
helium  in the cell  will always be at a higher temperature  than  the  copper 
at the  top of the cell due to  the  Kapitza resistance across the  top  boundary 
of the cell. When  the helium temperature reaches Tx for the  bottom of the 
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cell, a temperature gradient will develop across the normal fluid portion of 
the cell. The goal of the model is to be  able to calculate the  temperature 
profile of the cell as a function of time for a given bottom  heat  current  and 
top  temperature  ramp  rate.  This calculated temperature profile can  then  be 
used to find the temporal evolution of the  temperature at any  point  in the 
cell, and  it also can  be  used to find the  amount of heat  that passes through 
the cell, &out 5 &bot. 

To numerically model the cell, we start with  the  heat continuity  equa- 
tions.  These  equations  can  be combined in the case where the  thermal 
conductivity is position  dependent to give the following equation: 

d T  VXVT - = ( A / p C ) V 2 T  + - 
d t  pC 

where p is the density of the helium, C is the specific heat of the helium, 
X is the  thermal  conductivity of the helium, and T is the  temperature of 
the helium. Because the  thermal  properties of helium  near the X-transition 
are  functions of the reduced temperature E G T/Tq,) - 1 ,  it is necessary 
to transform  equation 1 into a function of the reduced temperature. To 
accomplish this  transformation, one must  include the  spatial dependence of 
the  transition  temperature: 

where ,z is the  distance above the  bottom of the cell, a is the acceleration 
(gravity)  acting  on  the cell, and ( d T / d P ) x  is the pressure  dependence of the 
X-transition. In one g and at saturated vapor pressure, the coefficient for 
z in  equation  2 is VTx = 1.273 X 10-6(K/cm). After taking all appropri- 
ate derivatives and making the necessary substitutions,2  equation 1 can  be 
rewritten as: 

de 
d t  Tx de  de 
- = D ( V 2 E  + (VE)-2 vTx + d(zn(X)) ( l  + E ) ]  + (VE)2( d ( W ) ) )  (3 )  

where D = X/(&) is the diffusivity of the helium. 
With  the differential equation  transformed  into the physically relevant 

variable, the equation  can  then  be  discretized using a 2-level Crank Nicholson 
implicit ~ c h e m e . ~  This scheme averages the right hand of equation 3 at the 
time  steps n and n+ 1 ,  and will be second order  accurate  in  time.  When  this 
method is  applied to equation 3, one must  be careful to keep the  equation 
first  order  in terms evaluated at the  later  time (n + 1). So, it is assumed 
that E does  not change much between consecutive time  steps. 

Once all the  appropriate  approximations  are  applied,  equation 3 can  be 
written as a discrete  equation for a given time  step n as an  array  tridiagonal 
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Fig. 1. Numerical simulation a 0.5cm long cell with &bot = 0.1pW/cm2, 
a ramp  rate of l.lnK/sec, and a Kapitza resistance of 1.69Kcm2/W. (a) 
The  temperature of the  bottom  and  the middle of the cell as a function of 
the  temperature of the  top of the cell. (b)  The  ratio of Qout and &bot as a 
function of the  temperature of the  top of the cell. 

in e;+', where j refers to  the  spatial grid position. This  matrix  can  then 
be solved using a tridiagonal  matrix inversion r ~ u t i n e . ~   T h e  coefficients for 
the ends of the  spatial grid are found  from the applied boundary conditions: 
constant  heat  inputted at z = 0, and controlled temperature at z = L. Also, 
since the superfluid  portion of the cell  will be isothermal with  the helium at 
the  top of the cell, the code is written so that  it only solves for the  temper- 
ature profile in  the  portion of the cell that contains  normal fluid. This gives 
the model an effectively varying cell length m the superfluid/normalfluid 
interface moves through  the cell. 

To match  the simulations with  the physical cells, the  top  boundary 
condition  includes the  temperature  drop between the cell helium and  the 
controlled  copper  end  cap. Numerically this was accomplished by calculating 
at each time  step how much of the  heat applied to  the  bottom of the cell, &bot, 
is lost as it is used to warm the normal fluid portion of the cell. Once the 
heat leaving the normal  fluid, Qout, is known, the  temperature  drop across 
the  top  boundary of the cell is calculated using the  Kapitza resistance of 
that boundary. 

Finally, the model was modified to  include a user specified value for the 
acceleration level acting  on  the helium  in the cell. This modification was 
made by returning to  equation 3, and replacing VTx = 1.273 x with 
VTx = (a/g)1.273 X 



Simulations of the Behavior of 4He... 

3. NUMERICAL RESULTS 

A typical numerically simulated data set is shown in figure 1. The 
simulation was done  with an applied heat  current of 0.1pW/crn2, a ramp 
rate for the  top copper  end cap of l.lnK/sec, a top  boundary or Kapitza 
resistance of 1.69Kcm2/W,  and a cell length of 0.5cm. As can  be seen  from 
the figure, the  bottom of the cell starts  to warm as soon as the  top of the cell 
warms above Tx(z = 0). The  heat  current passing through  the cell, QOUt, 
also starts to drop once normal fluid is  present  in the cell. Because of the 
low heat  current  and  ramp  rate used in this  simulation,  there  is very little 
difference between the  ramp  rate of the copper at the  top of the cell and 
the  ramp  rate of the helium, but  the  top of the cell has to warm N 12nK 
above the  transition  temperature of the middle of the cell before the helium 
reaches that  temperature. Finally, once the cell is full of normal  fluid, there 
is a small inflection in the warming rates of the  bottom  and middle of the 
cell, and  the  heat coming through  the cell starts  to increase. This behavior 
is consistent with  the experimentally observed behavior. 

3.1. Comparison To Experimental  Results 

With  these simulations  it is interesting to study  the effect of varying 
the various experimental  parameters, and  then compare the simulation’s 
results  with previously gathered  experimental data. There  are four  relevant 
parameters  that  can  be varied experimentally: the applied heat  current, 
the  top  ramp  rate,  the effective gravity, and  the  top  Kapitza resistance. 
Since the  current goal of the simulations is to be able to use the model to 
predict the behavior  in a reduced  gravitational  environment, we will focus 
on  those  results  in this  paper.  Figure 2 shows the effect of varying the 
acceleration level in the numerical simulations and on a physical cell (figure 
2). The simulation  and  the physical data have different applied heat  currents 
( Q b o t  = 0.4 and  0.9pW/cm2),  but all other  parameters were equal. The value 
of the  heat  current used in the simulation was choosen so that  the simulations 
were matched to behavior of the physical cell. As can  be seen from the 
figure, the  qualitative behavior is very similar for the real data versus the 
simulations,  but it does seem like the simulations  predict  somewhat  larger 
changes in  the behavior as the effective gravity  is lowered than what is seen 
in the physical system. 

4. CONCLUSIONS 

The numerical  model  presented  here gives good qualitative  agreement 
with  the behavior observed in physical helium  conductivity cells, but  there 
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Fig. 2. Comparison of varying the acceleration level in the simulations, 
&bot = 0.4pW/cm2, and in a physical cell, &bot = 0.9pW/cm2. Ramp  rate 
(0.55nKls) and  Kapitza resistance (1.69Kcm2/W) were the same for the 
simulations and  the physical cell. The simulation data has been  shifted  with 
respect to  the physical data for clarity. (a)  The  bottom  temerature as a 
function of the  temperature of the  top of the cell.(b) The  ratio of Qout and 
&bot as a function of the  temperature of the  top of the cell. 

is a need for further refinement of the model to be able to make quantitative 
comparisons of the simulations and physical data. The model  already  has 
been very useful for both  data analysis and as a tool for choosing appropriate 
experimental  parameters.  One of the improvements that will be added to 
the model is the Q dependence of the  &transition t empera t~ re .~   I t  also 
might  be useful to include the  heat conduction through  the side walls, but 
this is expected to  be a very small effect. 
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